Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy
نویسندگان
چکیده
Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT), a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.
منابع مشابه
An investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy
Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...
متن کاملطراحی و بهینهسازی طیف نوترونی برای درمان تومورهای عمیق مغزی به روش BNCT با کاهش آسیب رسیده به پوست
Boron neutron capture therapy (BNCT) is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET) radiation (particles 4He and 7Li nuclei) to tumors at the cellular level whilst avoi...
متن کاملDesign and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
متن کاملImpacts of multiple-field irradiation and boron concentration on the treatment of boron neutron capture therapy for non-small cell lung cancer
Background: Boron neutron capture therapy (BNCT) is a radiotherapy that combines biological targeting and high linear energy transfer. A potential therapeutic approach for non-small cell lung cancer (NSCLC) is considered. However, dose in lung tumor is not homogeneous, and it will reduce the effect of BNCT treatment. In order to improve the dose distribution of BNCT, the multi-field irradiation...
متن کاملAn Introduction to Boron Neutron Therapy (BNCT): Current Status and Future Outlook
Boron neutron capture therapy (BNCT) is based on the nuclear reaction, such that B-10 irradiated with low-energy thermal neutrons produces alpha particles with high linear energy transfer and lithium-7. Clinically, BNCT is used primarily for treatment of high-grade glioma or brain metastases from melanoma and, more recently, head, neck and liver cancers. Since reactors have long been used to pr...
متن کامل